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Abstract. The study of the charge asymmetry of produced particles allows one to investigate the interfer-
ence of different production mechanisms and to determine new features of the corresponding amplitudes. In
the process e−e+ → e−e+π+π− the two-pion system is produced via two mechanisms: two-photon (C-even
state) and bremsstrahlung (C-odd state) production. We study the charge asymmetry of pions differen-
tially in the pion momenta cross section originating from interference between these two mechanisms. At
low effective mass of the dipions this asymmetry is directly related to the s- and p-phases of elastic ππ
scattering. At higher energies it can give new information about the f0 meson family, the f2(1270) meson,
etc. The asymmetry is expressed via the pion form factor Fπ and the helicity amplitudes Mab for the
subprocess γ∗γ → π+π− as

∑
GabRe(F ∗

πMab), where we have analytically calculated the coefficients Gab

for the region giving the main contribution to the effect. Several distributions of the pions are presented
performing a numerical analysis in a model with point-like pions. In the region near the dipion threshold
the asymmetry is of the order of 1%. We show that with suitable cuts the signal to background ratio can
be increased up to about 10%.

1 Introduction

The study of charge asymmetry in particle production
can be used as an essential source of information about
production amplitudes which is difficult to obtain other-
wise. In this paper we discuss the charge asymmetry of
pions produced in the reaction e−e+ → e−e+π+π−. The
pion pair (dipion) in this process is produced mainly via
the two-photon mechanism (Fig. 1) or via bremsstrahlung
(Fig. 2).

The first of them gives charge parity even (C-even) di-
pions, while the second mechanism leads to C-odd pion
pairs. In the differential cross section the interference of
these mechanisms results in terms which are antisymmet-
ric under π+ ↔ π− exchange. Certainly, these terms dis-
appear in the total cross section or after a suitable averag-
ing. Nevertheless, they are observable and could give new
information about the production amplitudes which can-
not be obtained unambiguously by other approaches. In
particular, at low effective masses of the dipionsW ∼ 2mπ

this interference is directly related to the difference of s-
and p-phase shifts of the elastic ππ scattering. These phase
shifts are of primary importance for low energy hadron
physics [1,2] (in particular, for the chiral dynamics which
pretends to be the low energy version of QCD). At higher
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Fig. 1. Amplitude M1 for the two-photon production of pions.
The e− and e+ with initial 4-momenta (energies) p1 (E1) and
p2 (E2) and final momenta (energies) p′

1 (E′
1) and p′

2 (E′
2) emit

virtual photons with qi = pi−p′
i (ωi = Ei−E′

i). These photons
produce the C-even π+π− system with total 4-momentum k =
p+ + p− = q1 + q2 and effective mass W =

√
k2; furthermore

s = (p1 + p2)2 = 4E1E2

energies the interference can give new information about
the f0(400–1200) meson (former σ), the f0(980) meson,
etc. The nature of these particles presently is widely dis-
cussed.

The opportunity of using C-odd effects for such prob-
lems was first studied almost three decades ago in [3]. In
that paper the case of the small total transverse momenta
of the produced pion pair, k2

⊥ � m2
π, was considered.

However, this region gives only a small fraction of the en-
tire charge asymmetry discussed. In this paper we obtain
formulae which allow one to study the charge asymmetry
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Fig. 2. Amplitudes M2 and M3 for the bremsstrahlung pro-
duction of pions. The pion pair in the C-odd state is produced
by one virtual photon with 4-momentum k = p+ + p− emitted
by the electron (M2) or by the positron (M3). The open cir-
cles represent the virtual Compton scattering shown in Fig. 3
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Fig. 3. Virtual Compton scattering

in the main kinematical region, k⊥<∼W , and discuss the
main features of the effect and the background.

Recently the process e+e− → e+e−π+π− was consid-
ered in [4] for the case when the virtuality of one photon
is large, −q21 �W 2. The authors concentrate their efforts
on a QCD analysis of the exclusive dipion production in
a γ∗γ collision in that region (leading to a factorization
of perturbative QCD subprocesses and a generalized two-
meson distribution amplitude). The developed description
of the process at e+e− colliders also includes the interfer-
ence of two-photon and bremsstrahlung production mech-
anisms. Naturally, the estimates for the possible number
of events of that work are considerably lower than those in
the main region considered in the present paper. Note that
the discussed charge asymmetry was observed at CLEO
in the e+e− → e+e−ππ reaction detecting additionally an
electron scattered at large angle [5]1.

The effect of interest can be studied on e+e− colliders
with c.m. energies above 1 GeV. We show that the charge

1 A similar problem was discussed in [6] for ep scattering
related to HERA experiments. Unfortunately, those results
have no direct relation to experiments since the main C-odd
contribution in ep scattering is given by the production of ρ
mesons via strong interactions (diffractive production for pi-
ons flying along electrons or proton excitation for pions fly-
ing along protons). The bremsstrahlung production consid-
ered in [6] is suppressed roughly by a factor α = 1/137. Be-
sides, the authors of [6] claim that their formulae (obtained
for ep → epπ+π−) are valid for the pion charge asymmetry in
the process e−e+ → e−e+π+π−. In that respect their results
are definitely incorrect since contributions of zero helicity for
the virtual photon are not included. As we show here, these
contributions are of the same order of magnitude as those with
helicity ±1 (see Sect. 4 for details)

asymmetry is of the order of 1% and that the signal to
background ratio can be considerably improved with suit-
able cuts. Let us emphasize that in the method of data
preparation suggested in the present paper, the considered
asymmetries can be obtained from the data independent
on the uncertainty in calculating the background.

We consider an experimental set-up when only pion
momenta p+ and p− are measured (the so-called no tag
experiments). This set-up corresponds to the cross sec-
tion dσ/(d3p+d3p−) for the e−e+ → e−e+π+π− process.
Besides, our results are also valid for the single tag ex-
periments in which additionally the scattered electron is
recorded, and where an averaging is performed over the
small unbalance of transverse momentum of the scattered
electron and the dipion.

The outline of our paper is as follows: First we present
a qualitative description of different contributions to the
reaction e−e+ → e−e+π+π−. In Sect. 3 the necessary vari-
ables are defined and the basic formulae are presented.
The amplitude of the subprocess γ∗γ∗ → π+π− is repre-
sented via helicity amplitudes in a model independent way.
The charge asymmetry of pions is calculated in Sect. 4.
The obtained result [see (28), (29) and (31)] is given in a
simple analytical form. To discuss the background prob-
lems more accurately, we present in Sect. 5 approximate
formulae for the two-photon and bremsstrahlung produc-
tion in the kinematical region which is essential for the
charge asymmetry. In Sect. 6 we present an approximate
description of the γ∗γ → π+π− subprocess entering the
two-photon amplitude. To get an idea about the potential-
ity of future experiments we perform a numerical analysis
in Sect. 7 restricting ourselves to the QED model (point-
like pions) for the amplitudes which gives a reasonable
description at W < 1 GeV. We present several impor-
tant distributions and estimate the background. Addition-
ally we study the charge asymmetry of muons in the pro-
cess e+e− → e+e−µ+µ− (Sect. 8). In the final section we
summarize our results. Details of the calculations are pre-
sented in the Appendices.

2 Qualitative description
of different contributions

The main contribution to the cross section of the process
can be written via the amplitudes Mj shown in Figs. 1
and 2. It is a sum of C-even, C-odd and interference con-
tributions:

dσ = dσC=+1 + dσC=−1 + dσinterf , (1)

where

dσC=+1 ∝ |M1|2,
dσC=−1 = dσ2 + dσ3 ∝ |M2|2 + |M3|2,
dσinterf = dσ12 + dσ13, (2)
dσ12 ∝ 2Re(M∗

2M1), dσ13 ∝ 2Re(M∗
3M1).

Let us discuss these contributions qualitatively. In the
head-on collisions of the leptons the z-axis is chosen along
the initial electron momentum.
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The two-photon mechanism (Fig. 1) produces C-even dip-
ions. It provides the main contribution to the total cross
section. The corresponding part of the cross section
dσC=+1 can be expressed via the amplitudesMab describ-
ing the collisions of virtual photons with helicities a and
b (a, b = ±1, 0) [7]. Its dominant part is given by almost
real photons which have virtualities q21 and q22 close to
zero (small transfer momenta squared of electrons and
positrons). The produced pairs are distributed almost uni-
formly over their total rapidity and peaked at small values
of their total transverse momentum k⊥ (for details see the
review of [8]). In this kinematical region only the trans-
verse helicities (a, b = ±1) for almost on-shell photons
give the dominant contribution and the cross section can
be written via |M++|2, |M+−|2 and Re(M∗

+−M++).
The bremsstrahlung mechanism (Fig. 2) produces pion
pairs in the C-odd state. Its contribution to the cross
section dσC=−1/(d3p+d3p−) was calculated in [9]. It is
proportional to |Fπ(k2)|2 where Fπ is the pion form fac-
tor. The main contribution to dσ2 is given by the region
where the exchange photon with momentum q2 is almost
real. In that domain the sum of energy and longitudinal
momentum of the produced pair is close to that of the ini-
tial electron, while the transverse momentum of the pair
k⊥ is very small.

However, in the kinematical region essential for both
two-photon production and interference, the k⊥-distribu-
tion of the pions is relatively wide. The interference be-
tween bremsstrahlung by an electron (amplitude M2) and
by a positron (M3) is negligible small. Note that both
contributions dσC=+1 and dσC=−1 are charge symmetric;
they do not change under pion exchange π+ ↔ π−.

The interference of C-even and C-odd contributions
dσinterf = dσ12+dσ13 [see (2)] is antisymmetric under pion
exchange, π+ ↔ π−, due to opposite charge parities of the
dipion states produced by two-photon and bremsstrahlung
mechanisms. Therefore, this interference determines the
charge asymmetry of pions, i.e.

dσinterf =
1
2

[dσ(p+, p−, . . .) − dσ(p−, p+, . . .)] . (3)

To discuss this asymmetry, it is useful to introduce the
operator of charge conjugation of pions Ĉπ by its action
on an arbitrary function F (p+, p−):

ĈπF (p+, p−) = F (p−, p+). (4)

In particular, we have

ĈπdσC=±1 = dσC=±1, Ĉπdσinterf = −dσinterf .

Many features of this interference can naturally be
explained taking into account the described features of
the two-photon and bremsstrahlung production. For ex-
ample, the main contribution to dσ12 is given by an al-
most real photon q2 (small transfer momentum squared
of the positron). The produced pions fly mainly along the
electron, kz = p+z + p−z > 0, and the dipion transverse
momentum distribution is not peaked at small k⊥. There-
fore the transverse momentum of the electron is not small,

q1⊥ ≈ k⊥. Similarly, the main contribution to dσ13 is
given by the almost real photon q1 (small transfer mo-
mentum squared of the electron), whereas the transverse
momentum of the positron is not small, q2⊥ ≈ k⊥. The
produced pions fly mainly along the positron, kz < 0.

Certainly, the sign of the observed effect is different
for dσ12 (related to bremsstrahlung production of pions
by an electron with negative charge) and for dσ13 (related
to bremsstrahlung production of pions by an positron with
positive charge). Therefore, some details of the asymmetry
are different for e+e− and e−e− collisions.

Let us first consider the s-channel contributions. In the
previous discussion we did not consider the additional set
of diagrams which can be obtained from those in Figs. 1
and 2 interchanging the outgoing electron by the incoming
positron (p′

1 ↔ −p2), etc. The contributions of those dia-
grams contain an additional factor 1/s due to the photon
propagator. Besides, the final electron and positron have a
wide angular distribution in the main regions and, there-
fore, do not give a logarithmic enhancement (contrary to
the considered diagrams). As a result, the contributions of
the s-channel (annihilation) diagrams and their interfer-
ence with those of Figs. 1 and 2 are suppressed by a factor
W 2/(sL) where L ∼ 10 ÷ 15 is a typical logarithm.

3 Basic notations and general formulae

Our main notational conventions are given in Figs. 1 and 2.
As already mentioned, we consider the head-on collisions
of electrons and positrons with the z-axis along the initial
electron momentum. In this frame pi = (Ei, 0, 0,±(E2

i −
m2

e)
1/2), i = 1, 2. The virtual photon momenta for the two-

photon production of Fig. 1 are qi = pi−p′
i = (ωi,qi⊥, qiz)

with

q2i = 2qipi = −q2
i⊥ +m2

e(ωi/Ei)2

1 − (ωi/Ei)
< 0. (5)

The 4-momenta of the produced pions are given by p± =
(ε±,p±⊥, p±z) with p2± = µ2. Below we use the quantities

x± =
ε± + p±z

2E1
=
p±p2
p1p2

, y± =
ε± − p±z

2E2
=
p±p1
p2p1

,

x = x+ + x−, y = y+ + y−. (6)

For ultra-relativistic pions flying along the initial electron
or positron momentum, the quantity x± (y±) is the frac-
tion of energy transferred from the electron (positron) to
π±. The variables x± (y±) appear in the cross section dσ12
(dσ13).

In what follows, we consider the symmetric and anti-
symmetric combinations of the pion momenta:

k = p+ + p−, ∆ = p+ − p−. (7)

The pion charge conjugation operator leads in particular
to

Ĉπ∆
µ = −∆µ.

Therefore, the asymmetry effects are proportional to the
components of the 4-vector ∆.
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To describe that asymmetry we use the variables

ξ =
x+ − x−
x

=
p2∆

p2k
,

η =
y+ − y−
y

=
p1∆

p1k
, (8)

K− =
(p2 − p1)∆
(p2 + p1)k

=
xξ − yη
x+ y

,

v = p2
+⊥ − p2

−⊥ = k⊥∆⊥.

The “transverse” variable v is a natural variable both
for contributions dσ12 and dσ13. The “longitudinal” vari-
able ξ naturally arises in describing the contribution dσ12
(whereas η arises in describing dσ13). The symmetric vari-
able K− is suitable to discuss the sum dσ12 + dσ13. Note
that K− is proportional to the difference of the longitu-
dinal momenta of π+ and π− in the e−e+ center-of-mass
system

K− =
{
p+z − p−z

ε+ + ε−

}
e−e+c.m.s.

.

Besides, K− = ξ at x� y and K− = −η at x� y.
The amplitude M1 of the two-photon production is

written via the amplitude Mµν of the subprocess γ∗γ∗ →
π+π− as

M1 =
4πα
q21q

2
2

(ū′
1γµu1) (v̄2γνv

′
2)M

µν , (9)

where the bispinors u1(u′
1) and v2(v′

2) correspond to the
initial (final) electron and positron, respectively.

Instead of the amplitude Mµν it is more convenient to
use the helicity amplitudes Mab which can be introduced
via2

Mµν =
∑

ab=±1,0

(−1)a+be
(a)∗
1µ e

(b)∗
2ν Mab. (10)

Here e(a)
jµ is the polarization vector of the jth virtual pho-

ton with helicity a = ±1, 0. A virtual photon is called
transverse if its helicity is equal to ±1 and scalar (lon-
gitudinal) for zero helicity. Since the amplitude Mµν is
C-even, the vectors of transverse and scalar polarization
are C-odd and C-even, respectively (see Appendix A for
details):

ĈπM
µν = Mµν ,

Ĉπe
(±1)
iµ = −e(±1)

iµ , Ĉπe
(0)
iµ = e(0)iµ , (11)

and we get

ĈπM0± = −M0±, ĈπM+± =M+±. (12)

It is important that the amplitudes Mab with scalar pho-
tons disappear near the photon mass shell:

M0± ∝
√

−q21 , M±0 ∝
√

−q22 , M00 ∝
√
q21q

2
2 ,

at q21,2 → 0. (13)

2 Details of kinematics for the subprocess γ∗γ∗ → π+π− are
given in Appendix A

So the amplitude M1 of the two-photon production
can be represented in the form

M1 =
4πα
q21q

2
2

∑
ab=±1,0

(−1)a+b

×
(
ū′

1ê
(a)∗
1 u1

) (
v̄2ê

(b)∗
2 v′

2

)
Mab. (14)

In a similar way the amplitude M2 of the bremsstrah-
lung production by an electron can be written as

M2 =
(4πα)2

q22k
2 Fπ(k2)

×
∑

c=±1,0

(−1)c
(
ū′

1Ĉ
(c)u1

) (
v̄2ê

(c)∗
2 v′

2

)
, (15)

Ĉ(c) = ∆̂
p̂′
1 + k̂ +me

(p′
1 + k)2 −m2

e

ê
(c)
2 + ê(c)2

p̂1 − k̂ +me

(p1 − k)2 −m2
e

∆̂,

where the quantity ū′
1Ĉ

(c)u1 corresponds to the amplitude
of the virtual Compton scattering shown in Fig. 3; Fπ(k2)
is the pion form factor.

As a result, the interference of the amplitudes of M1
and M2 is given by the expression

dσ12 = 2Re(M∗
2M1)

dΓ
2s

(16)

= −2
(4πα)3

q21q
2
2k

2

∑
abc=±1,0

Re
(
F ∗

πMab)
bc
2 C

ac
1

) dΓ
2s
,

where the phase volume of the final particles is

dΓ = (2π)4δ(p1 + p2 − p′
1 − p′

2 − p+ − p−)

× d3p′
1d

3p′
2

2E′
12E

′
2(2π)

6
d3p+d3p−

2ε+2ε−(2π)6
, (17)

the (non-normalized) density matrix of the second virtual
photon is

ρbc
2 =

(−1)b+c

2(−q22)
Tr

{
(p̂2 −me)ê

(b)∗
2 (p̂′

2 −me)ê
(c)
2

}
(18)

and

Cac
1 =

(−1)a

2
Tr

{
(p̂′

1 +me)ê
(a)∗
1 (p̂1 +me)Ĉ(c)∗

}
. (19)

4 The charge asymmetry

Let us remind the reader that the charge asymmetry is de-
termined by the two contributions dσ12 and dσ13 arising
from the interference of the two-photon diagram of Fig. 1
with bremsstrahlung diagrams of Fig. 2, [see (2)]. Calcu-
lating this asymmetry we limit ourselves to logarithmic
accuracy (which is about 5% in our case).

First, we discuss the contribution dσ12. According to
the qualitative description in Sect. 2 the main contribution
to dσ12 is given by very small values of (−q22). Therefore,
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the second virtual photon can be considered as almost
real. Taking into account (5) we can use in all expressions

q22 = 0, q2⊥ = 0, q1⊥ = k⊥, q21 = − k2
⊥

1 − x, (20)

except for the propagator of the second photon in the
matrix element M1 [see (9) and (14)]. This has the con-
sequence that in this limit the amplitudes Mab with b = 0
can be safely neglected [see (13)].

To obtain dσ12/(d3p+d3p−), we transform the phase
volume (17) to the form

dΓ =
d2q2⊥

32(2π)8(E1 − ω1)(E2 − ω2)
d3p+d3p−
ε+ε−

(21)

and integrate either over q2⊥ or q22 and ϕ2. The latter is
the azimuthal angle of the vector q2⊥. After integrating
over ϕ2 the non-diagonal elements of the ρbc

2 matrix dis-
appear and the final result contains ρ++

2 = ρ−
2 only (i.e.

b = c = ±1) ∫
ρbc
2

d|q22 |
|q22 | dϕ2 = 2πδbcρ

++
2 L2,

L2 =
∫

d|q22 |
|q22 | = ln

|q22 |max

|q22 |min
.

In the integration over |q22 | the lower limit is of kinematical
origin, |q22 |min = m2

ey
2
2/(1 − y2), where

y2 =
2q2p1
s

=
ω2

E2
=
W 2(1 − x) + k2

⊥
sx(1 − x) . (22)

With the considered logarithmic accuracy the upper limit
is determined by a scale at which the integrand (besides
the photon propagator) starts to decrease significantly. For
pion pair production this leads to

|q22 |max ∼ min
{

k2
⊥

1 − y2 ,m
2
ρ,W

2
}
, (23)

where mρ is the ρ meson mass, which is the natural scale
of the form factors. As a result, we have

dσ12 = − α3

32π4
ρ++
2

s2W 2k2
⊥
L2Re(F ∗

πT )
d3p+d3p−
ε+ε−

,

T =
∑
ab

MabC
ab
1 . (24)

The calculation of the trace (19) which determines Cab
1 is

given in Appendix B.
To present the contribution (24) in a compact form,

it is useful to introduce the auxiliary vector r⊥ and the
angle φ between this vector and the vector k⊥ via3

r⊥ =
1
2
(∆⊥ − ξk⊥) =

x−
x

p+⊥ − x+

x
p−⊥,

r⊥k⊥ = |r⊥||k⊥| cosφ (25)
3 The angle φ is also the azimuthal angle between the vectors

p+ and (−p1) in the γ∗γ c.m.s.

and use the dimensionless quantities

zr =
|r⊥|
µ
, zk =

|k⊥|
µ
, d = 1 − x+

(1 − ξ2)z2k
4(1 + z2r )

. (26)

In this notation

W 2 = 4µ2 1 + z2r
1 − ξ2 , q21 = −µ2 z2k

1 − x,

y2 =
4µ2

s

(1 + z2r )d
x(1 − x)(1 − ξ2) , (27)

d3p+d3p+
ε+ε−

= 4πµ4zkdzkzrdzrdφ
dx
x

dξ
1 − ξ2 .

We obtain the following expression for the interference
contribution dσ12:

dσ12 =
[
G++Re (F ∗

πM++) +G+−Re (F ∗
πM+−)

+ G0+Re (F ∗
πM0+)

]d3p+d3p−
ε+ε−

,

Gab = − α3

8π4
ρ++
2 L2

s2W 2xzkd
gab,

gab =
3∑

n=0

gab
n cos (nφ), (28)

ρ++
2 =

2
y22

(
1 − y2 +

1
2
y22

)
,

L2 = ln
|q22 |max(1 − y2)

m2
ey

2
2

.

The nonzero coefficients gab
n are

g++
0 = (2 − x)ξzk,

g++
1 = (2 − x)2zr − 2 − 2x+ x2

1 − x zrd,

g+−
1 = −(2 − 2x+ x2)zr,

g+−
2 = −(2 − x)ξzk, (29)

g+−
3 = 2(d− 1 + x)zr,

g0+0 = zr(2 − x)
√

2(1 − x),
g0+1 = −2ξzk

√
2(1 − x),

g0+2 = − 2(2 − x)√
2(1 − x)

(d− 1 + x)zr.

Let us briefly discuss this result.
We note that

ρ++
2

s2
∝ 1

(sy2)2
=

x(1 − x)[
W 2(1 − x) + k2

⊥
]2 .

Therefore, the effect under discussion does not decrease
with growing s, as one could imagine from a first look at
(28).

The coefficient g0+ is of the same order as g++ and
g+−. Near the mass shell the amplitude M0+ ∝

√
−q21 ∼
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k⊥ [see (13) and (20)]. However, in the main region for the
charge asymmetry the total transverse momentum of the
pion system, k⊥, is not small. Therefore the contribution
of the amplitudeM0+ to the interference is roughly of the
same order of magnitude as the contributions of the other
amplitudes.

The π+ ↔ π− exchange is realized by the ξ → −ξ
and φ → π − φ replacements. As was discussed above,
the contribution dσ12/(d3p+d3p−) is C-odd, i.e. it changes
sign under this exchange. Indeed, the coefficients g++ and
g+− alter sign while g0+ remains unchanged. On the other
hand, the amplitudes M++ and M+− are unchanged (C-
even) while M0+ changes sign (C-odd) [see (12)].

According to (28) and (29) the contribution of ampli-
tude M+− disappears after averaging over the azimuthal
angle φ (this fact is explained in Appendix C):

〈dσ12〉φ ∝ −g++
0 Re (F ∗

πM++) − g0+0 Re (F ∗
πM0+)

= −(2 − x) (30)

× [ξzk Re (F ∗
πM++) + zr

√
2(1 − x)Re (F ∗

πM0+)
]
.

For small transverse momentum of the produced pair,
k⊥ → 0, our result for dσ12 coincides with that of [3]
(see Appendix C). In this region the asymmetry in ξ is
negligibly small compared with that in v.

We have obtained our equations in the dominant re-
gion of the effect k2

⊥ ∼ −q21 <∼W 2. However, our sum∑
gabRe (F ∗

πMab) entering (28) coincides with the cor-
responding expression from [4] despite the fact that the
latter was obtained in a quite different kinematical region
(at −q21 �W 2).

The term dσ13 is obtained from the presented formulae
using the substitution rules (see Appendix C for details)

dσ13

d3p+d3p−
= (31)

− dσ12

d3p+d3p−
(p1 ↔ p2, p

′
1 ↔ p′

2, q1 ↔ q2);

in particular
x± → y±, ξ → η,

Mab(q1, q2, ∆) → (−1)a+bMba(q1, q2, ∆).

5 Two-photon
and bremsstrahlung background

Let us now present the necessary formulae for the two-
photon (dσ1) and bremsstrahlung (dσ2) contributions to
the pion pair production which are background for the
considered asymmetry.

The differential cross section of the two-photon contri-
bution can be written via the helicity amplitudesMab (10)
as

dσC=+1 =
(4πα)2

q21q
2
2

∑
abcd=±1,0

M∗
cdMab)

ac
1 )

bd
2

dΓ
2s
. (32)

Here )bd
2 is defined in (18) and )ac

1 is given by a similar
expression with the evident changes p2 → p1, p′

2 → p′
1,

e2 → e1.
The further calculations repeat those in Sect. 4. At

fixed value of k⊥ there are two regions (A) and (B) where
either q22 ≈ 0 or q21 ≈ 0. Those regions give the dominant
contributions in logarithmic approximation:

dσC=+1 =
α2

32π5k2
⊥

(TA + TB)
d3p+d3p−
ε+ε−

. (33)

In region (A) we can use (20)–(23), which leads to

TA =
ρ++
2

(sx)2
L2

2∑
n=0

Tn cos(nφ). (34)

The coefficients Tn are of the form

T0 =
1
2

(|M++|2 + |M+−|2) (
1 − x+

1
2
x2

)
+ |M0+|2(1 − x), (35)

T1 = −Re
[(
M∗

+− −M∗
++

)
M0+

]
(2 − x)

√
1 − x

2
,

T2 = −Re
(
M∗

+−M++
)
(1 − x).

The helicity amplitudes Mab have be taken in the limit
(20).

The contribution TB of region (B) can be obtained
from TA substituting p1 ↔ p2, p

′
1 ↔ p′

2, q1 ↔ q2 (similar
to (31) but without changing sign).

A detailed analysis of these equations [8] shows that
the pairs produced via the two-photon mechanism are con-
centrated at small values of k⊥:

dσC=+1 ∝ dk2
⊥

k2
⊥

ln
k2

⊥s
m2

eW
2 , (36)

and they are distributed almost uniformly in the rapidity:

dσC=+1 ∝ dx
x

dy
y
. (37)

For the bremsstrahlung contribution (dσC=−1 = dσ2 +
dσ3) we use the results of [9]. For pions flying along elec-
trons, the dominant contribution is given by the amplitude
M2 taken in the limit (20). In logarithmic approximation
we have

dσ2 = |M2|2 dΓ
2s

=
α4

8π3 |Fπ|2 (38)

× x2ρ++
2

W 2[W 2(1 − x) + k2
⊥ +m2

ex
2]2
LT−

d3p+d3p−
ε+ε−

,

T− =
(

1 − 4µ2

W 2

) [
y2 +

(
y2 − W

2

s

)2]

− y2η2 − (yη + y2xξ)2,

L = ln
s2(1 − x)(1 − y2)

m2
e[W

2 + sy2(1 − x)] .
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The denominator [W 2(1 − x) + k2
⊥ +m2

ex
2]2 shows that

this contribution is dominated by small k2
⊥ and large x

(i.e. 1 − x� 1).
For pions flying along positrons the corresponding con-

tribution dσ3 is obtained via dσ3 = dσ2(x ↔ y, y2 ↔
x1, ξ ↔ η).

6 The γ∗γ → π+π− subprocess

For the pion pair production the strong interaction ef-
fects are of primary interest. Nevertheless, the pure Born
QED model (point-like pions) gives a reasonable descrip-
tion of the squared two-photon amplitude at W <∼ 1 GeV.
On the contrary, the QED amplitude itself is real whereas
the phase shifts of the correct γγ → π+π− amplitudes
coincide with those of elastic ππ scattering (at least, at
W < 520 MeV). The QED amplitudes Mab entering (24)
are (see Appendix A)

MQED
++ = 8πα−MQED

+− ,

MQED
+− = 8πα

(1 − x)z2r
(1 + z2r )d

, (39)

MQED
0+ = 4παξ

√
−2q21
µ

(1 − x)(d− 2 + 2x)zr
(1 + z2r )d2

,

FQED
π = 1.

In the next section we obtain numerical results for that
model. It allows us to develop a better understanding of
the potentiality of future experiments.

With increasing dipion effective mass W above the
threshold the strong interaction effects become more es-
sential. AtW >∼ 1 GeV these effects dominate and the main
contribution is given by resonances. The pion form factor
entering the bremsstrahlung amplitude is experimentally
well studied using the reaction e+e− → ππ. Using the
charge asymmetry the main task in this domain is to study
the resonances in the two-photon channel, i.e. the differ-
ent f0’s and f2. The nature of the f0 resonances has been
subject of discussion till now, and different models of the
resonance origin can lead to different W -dependences of
their phases. Those models can be tested using the dis-
cussed asymmetry. For the f2 resonance the value of its
amplitude for the two-photon production with total helic-
ity 0 can be obtained by studying the longitudinal charge
asymmetry (which practically does not depend on the am-
plitude with total initial helicity 0).

Near the resonances some of the amplitudes Mab are
enhanced compared to their QED values. Besides, we have
for the pion form factor |Fπ(W 2)| > 1 in a wide enough
region of interest. A detailed study of the effect with a re-
alistic γγ → π+π− amplitude and a discussion of the po-
tentiality of such experiments to study the phase shifts of
ππ scattering and the resonance nature will be presented
elsewhere.

7 Analysis of results

7.1 Studied quantities

As was discussed before, the contribution dσ12 dominates
for pion pairs flying along the initial electron, i.e. at large
values of x. On the other hand, dσ13 dominates for dipions
flying along the initial positron, i.e. at large values of y.
Since xy = (W 2 +k2

⊥)/s, we can introduce the character-
istic value

x0 =

√
W 2 + k2

⊥
s

(40)

and find that the total longitudinal momentum of the pion
pair in the c.m.s. of the colliding electrons and positrons
k(p2 − p1)/s1/2 ∝ x− y is positive at x > x0 and negative
at x < x0. Therefore, |dσ12| � |dσ13| at x � x0 and
|dσ13| � |dσ12| at x� x0.

In the region x ∼ y ∼ x0 the two contributions are
of the same order, |dσ12| ∼ |dσ13|, but their distributions
over the longitudinal variable K− and the transverse vari-
able v have different properties. Indeed, K− is antisym-
metric whereas v is symmetric under p1 ↔ p2 exchange.
Having in mind relation (31), we conclude that

dσ13

dK−
=

dσ12

dK−
(p1 ↔ p2, p

′
1 ↔ p′

2, q1 ↔ q2),

dσ13

dv
= −dσ12

dv
(p1 ↔ p2, p

′
1 ↔ p′

2, q1 ↔ q2).

To take into account the described properties and to
summarize different contributions, it is natural to intro-
duce the following quantities related to the charge asym-
metry of the pions4:

∆σK =
∫
D
ε(K−)dσ, ∆σv =

∫
D
ε(v)ε(x− y)dσ. (41)

In these definitions we denote by D the kinematical re-
gion in phase space given by the detector array and suit-
ably chosen cuts (certainly, it is necessary to test that this
region is symmetric in K− and v).

The background for these effects is found integrating
the two-photon and bremsstrahlung contributions over the
same region D:

∆σB =
∫
D

(dσC=+1 + dσC=−1) . (42)

7.2 Numerical analysis

Below we consider the charge asymmetry effects within the
QED model of point-like pions. First, we present in Table 1

4 Below we use the standard step functions θ(x) and ε(x) =
θ(x)−θ(−x). For example, ∆σK is the difference between cross
sections for events with p+z > p−z and that with p+z < p−z

in the e+e− c.m.s.
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Table 1. Pion charge asymmetry signals and background at
different c.m. energies

√
s, GeV 1 4 10 200

∆σK , pb −6.1 −26 −35 −56
∆σv, pb 3.3 17 27 51
∆σB , pb 420 2900 6200 27000

the integrated pion charge asymmetry in the variables K−
and v (signals S) and the background of two-photon and
bremsstrahlung production (background B) at different
c.m. energies s1/2.

Using the charge asymmetry one can study the two-
photon amplitude and its phase shift as a function of the
effective mass of the π+π− system W =

√
k2. To see the

potentiality of such a study, we present in Fig. 4 the dis-
tribution of the signal and the background overW for two
collider energies. Both signal and background are concen-
trated near the threshold where the longitudinal asymme-
try |d∆σK/dW | is considerably larger than the transverse
one, |d∆σv/dW |. At W > 400 ÷ 500 MeV (depending on
s1/2) the transverse asymmetry dominates over the longi-
tudinal one. Nevertheless, having in mind the results for
the muon charge asymmetries presented below we mainly
discuss in the following the longitudinal asymmetry.

We consider two typical intervals of effective mass val-
ues (over which we integrate):

(1) W = 300 ÷ 350 MeV; this is near the threshold where
QED is approximately valid.

(2) W = 475 ÷ 525 MeV. This is far from the threshold
and resonances where one hopes to describe the mod-
ules of the two-photon amplitudes reasonably within
QED whereas the bremsstrahlung amplitude is en-
hanced compared to its QED value due to the ρmeson
resonance. For this region we expect that our numbers
underestimate the effect.

The signal/background ratio (S/B) is introduced by

S

B
=

|∆σS |
∆σB

with S = K−, v. (43)

Besides, it is useful to consider the statistical significance
(SS) of the effect. This quantity is expressed via the num-
ber of events for the effect, NS = L|∆σS |, and back-
ground, NB = L∆σB , as

SS =
NS√
NB

, (44)

where L is the integrated luminosity of the collider. For the
luminosity we use numbers proposed for the DAΦNE and
PEP II colliders. We now demonstrate that the S/B and
SS quantities can be considerably improved with suitable
cuts on k⊥ and x.

The variable k2
⊥ describes both the transverse motion

of the dipion and the virtuality of the photon. The charge
asymmetry effect, see (28) and (29), vanishes at small

Fig. 4. Contributions ∆σK and ∆σv (41) and background at
s1/2 = 1 and 10GeV versus W

|k⊥|, dσ12 ∝ d|k⊥|. On the contrary, the two-photon con-
tribution is singular at |k⊥| ∼ 0, see (36). In Fig. 5 we
present the signal and background integrated over k⊥ > k0
(k0 being a cut-off from below). One observes that with in-
creasing k0 the background drops considerably faster than
the signal. Therefore, some cut at small k2

⊥ = k2
0 is de-

sirable; the best cut on the pair transverse momentum k0
depends on s and W 2.

The variable x describes the dipion motion along the
collision axis. The factor W 2d ≡ W 2(1 − x) + k2

⊥ in the
denominator of (28) shows that in the interference the
dipions tend to be concentrated at x ∼ 1. On the con-
trary, in the two-photon production the x-distribution of
the dipions is proportional to 1/x. Therefore, some cut at
not too low x would be desirable. On the other hand, the
bremsstrahlung contribution is concentrated near x = 1
more strongly than the charge asymmetry contribution.
Moreover, the values of x very close to 1 contribute only
weakly to the charge asymmetry. Therefore, an additional
cut at x near 1 is suggested. In Fig. 6 these features are
demonstrated for signal and background contributions in-
tegrated over x > x0.

To show the effect of both cuts we present in Table 2
some examples considering cuts in k⊥ and two symmetri-
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Table 2. Effect of cuts in k⊥ and x, y

√
s L W cuts ∆σB ∆σK S/B SS

fb−1 MeV pb pb %

1GeV 5 300 no cuts 145 −1.85 1.3 11
DAΦNE ÷ k⊥ > 100MeV, 14.6 −1.07 7.3 20

350 0.4 < x, y < 0.9

10GeV 30 475 no cuts 433 −3.13 0.72 8.2
PEP-II ÷ k⊥ > 150MeV, 17.2 −1.62 9.5 68

525 0.3 < x, y < 0.95

Fig. 5. Contributions ∆σK and background at s1/2 = 1 and
10GeV for the interval W = 300 ÷ 350MeV and W = 475 ÷
525MeV and k⊥ > k0 versus k0

cal regions in pion rapidity (contributions of pions flying
along the initial electron momentum x1 > x > x2 and the
initial positron momentum x1 > y > x2). For the DAΦNE
collider we consider the region of small effective mass of
the dipion W = 300 ÷ 350 MeV. The used cuts improve
S/B by a factor about 5 and SS by a factor of about 2.
For the PEP-II collider we consider an intermediate mass
region W = 475 ÷ 525 MeV. The used cuts improve both
S/B and S/S by about one order of magnitude. It is natu-

Fig. 6. The contributions ∆σK and background at s1/2 = 1
and 10GeV for the intervals W = 300 ÷ 350MeV and W =
475 ÷ 525MeV and x > x0 versus x0

ral to expect that the same type of improvement will take
place at W ∼ 1 GeV.

For the physical analysis of the results it is useful to
consider the individual contributions of different helicity
amplitudes Mab to the charge asymmetry. The results
for the longitudinal asymmetry d∆σK/dW are shown in
Fig. 7. In this distribution the amplitudeM++ is dominant
whereas M+− contributes only weakly to the asymmetry
(in accordance with the discussion at the end of Sect. 4).
The last contribution can be even stronger suppressed, ex-
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Fig. 7. Contributions of the helicity amplitudes Mab ≡ (ab)
to the distribution d∆σK/dW (41) versus W at s1/2 = 1 and
10GeV

cluding pion pairs with small longitudinal momentum in
the e+e− c.m.s. additionally. Therefore, the distribution
over K− allows us to obtain clean information about the
amplitude M++.

In the transverse distribution d∆σv/dW (Fig. 8) the
contribution of the M++ and M+− amplitudes are of the
same order, partially compensating each other. Therefore,
the combined distributions over K− and v can give com-
plementary knowledge about individual contributions of
the M++ and M+− helicity amplitudes.

Finally let us notice, that in the K−-distribution the
contribution of the amplitude with one scalar photonM0+
is not negligible.

7.3 Weighted cross sections

For future studies it is useful to look at the presented anal-
ysis from a more general point of view. The distributions
of produced pions contain a charge asymmetric part. To
extract it, we consider each event with the C-odd weight
function ε(K−) or ε(v). So, our asymmetry ∆σK and ∆σv

defined in (41) can be considered as “weighted cross sec-
tions” with these weights. Certainly, to extract the asym-

Fig. 8. Same as in Fig. 7 for the distribution d∆σv/dW , see
(41)

metric part of the cross section, one can use also other
C-odd weight functions. It seems to be attractive to ex-
plore more smooth weight functions, for example, given
by factors K− and v instead of ε(K−) and ε(v), i.e. to
introduce weighted cross sections

∆σC
K =

∫
D
K−dσ, ∆σC

v =
∫
D
vε(x− y)dσ. (45)

They (or similar quantities) may be more suitable for a
theoretical analysis, for generalizations and for data pro-
cessing. In particular, the signs of small differences p+z −
p−z or p2

+⊥ −p2
−⊥ cannot be reliably established from the

data. However, the proposed weighted cross sections (45)
are weakly sensitive to those small values.

The background for these “cross sections” is given by
the total weighted cross section of the process in the same
kinematical region,

∆σC
BK =

∫
D

|K−| (dσC=+1 + dσC=−1) ,

∆σC
Bv =

∫
D

|v| (dσC=+1 + dσC=−1) . (46)
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Table 3. Muon pair charge asymmetry signals and background
at different c.m. energies

√
s, GeV 1 4 10 200

∆σK , pb −11 7.9 42 120
∆σv, pb 180 660 950 1700
∆σB , pb 7100 3.7 ×104 6.9 ×104 3.7 ×105

8 Process e−e+ → e−e+µ+µ−

The process e−e+ → e−e+µ+µ− can give an essential
background while studying the dipion production.

The charge asymmetry of muons in this process has
been studied for the first time at small k⊥ in [3]. The
muon asymmetry without that limitation was obtained in
[10] (in the same logarithmic accuracy as is used here). We
use the results as given in the review of [11] and transform
them to a form convenient for analysis5. In the notations
of (25) and (26) (where µ is now the muon mass) we have

dσ12 =
2α4

π3
ρ++
2 L2

s2W 2xzk(1 + z2r )d2

×
[

3∑
n=0

tn cos(nφ)

]
d3p+d3p−
ε+ε−

, (47)

t0 = t2 + (2 − x)ξzkd,
t1 =

zr
4

{
(1 − x) [

8(1 − x) + 10(1 − ξ2)z2k
]

+ (2 − 2x+ x2)
[
d− 1 + x

1 − x (1 + ξ2)z2k

+ 4
(

−(d− 2 + 2x) + (1 − x)1 + ξ2

1 − ξ2 (1 + z2r )
)]}

t2 = (2 − x)ξ(d− 2 + 2x)zkz2r ,
t3 = 2(1 − x)(d− 1 + x)z3r ,

with L2 given by (28) and |q22 |max ∼ min{k2
⊥/(1 − y2),

W 2}. At small transverse momentum of the pair k⊥ this
result coincides with that obtained in [3] (see Appendix
C). The contribution dσ13 is obtained from dσ12 using the
replacements (31).

The two-photon and bremsstrahlung backgrounds can
be found in review [11].

We have analyzed the charge asymmetry of muons in
the same terms as it was done for the pions. Table 3 con-
tains values of integrated signals and background at dif-
ferent c.m. energies. From that table we observe:

(i) the muon transverse asymmetry ∆σv is considerably
larger than the muon longitudinal asymmetry ∆σK ;

(ii) the transverse asymmetry for muons is considerably
larger than that for pions (see Table 1);

5 Note two misprints in [11]: First, diagram (b) in Fig. 4.1
should be replaced by diagram (c) and vice versa. Second, in
the statement after (4.36) “dσac may be derived from (4.36)
through the substitution (4.4)” one has to add “changing the
overall sign” - see Appendix C for the pion case

Fig. 9. Contributions ∆σK and ∆σv (41) and background at
s1/2 = 1 and 10GeV versus W for muon pair production

(iii) the longitudinal asymmetries for pions and muons are
of the same order of magnitude.

Similar relations between muon and pion asymmetries
take place in all considered regions of the parameters.
Moreover, in some regions the longitudinal asymmetry of
muons disappears contrary to that of pions. In Figs. 9 and
10 we present the distributions similar to those given in
Figs. 4 and 5 for pions. Having in mind the muon pro-
duction as a possible background for the pion production,
we consider just the same regions of W as used for pions.
It is interesting to note that at s1/2 = 10 GeV the lon-
gitudinal asymmetry d∆σK/dW (Fig. 9) changes sign at
W ≈ 500 MeV. The position of this crossover depends on
s1/2 (cf. the curve for s1/2 = 1 GeV). Such a sign change
is absent for pions.

9 Summary and conclusions

We have calculated the charge asymmetry contribution
dσinterf/(d3p+d3p−) for the process e+e− → e+e−π+π−.
Our result, summarized in (28), (29) and (31), is expressed
via the helicity amplitudes M++, M+− and M0+ of the
subprocess γ∗γ → π+π− and the pion form factor Fπ in
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Fig. 10. The contribution ∆σK and background at s1/2 = 1
and 10GeV for the intervals W = 300 ÷ 350MeV and W =
475÷525MeV and k⊥ > k0 versus k0 for muon pair production

analytical form. It can be used for experiments both with-
out recording the scattered electrons (no tag experiments)
and with recording one scattered electron (single tag ex-
periments).

The experimentally observable effects can be studied,
in principle, in the longitudinal asymmetry (in the vari-
able K− of (8) representing the difference in longitudi-
nal momenta of positive and negative pions) and in the
transverse asymmetry (in the variable v of (8) represent-
ing the difference between squared transverse momenta of
positive and negative pions). The longitudinal asymme-
try effects are saturated mainly by the contribution of the
γγ → π+π− helicity amplitude M++. The main contribu-
tion to the transverse asymmetry is given by amplitudes
M++ andM+−. The two-photon amplitudeM0+ (one lon-
gitudinal (scalar) photon and one transverse photon) gives
typically about 10% of effect (within the QED model).

The main part of our numerical analysis of the effect
is performed in the QED model giving a reasonable de-
scription of the two-photon amplitude at W <∼ 1 GeV and
the one-photon amplitude near the threshold.

We have considered also the charge asymmetry for
muon pairs which can give an essential background to the
pion asymmetry effects. Our analysis demonstrates that
the transverse asymmetry of pions is much smaller than
that of muons, whereas the longitudinal asymmetry of pi-
ons is generally close to that of muons (in some regions
of parameters the latter even disappears). Therefore, in
our detailed numerical studies we have concentrated our
efforts to the study of the longitudinal asymmetry.

Our QED numerical analysis presents a good basis to
estimate the potentiality for studying pion–pion scattering
phase shifts near the threshold at the colliders DAΦNE,
VEPP2000, etc. The study of resonances (for example,
different f0’s and f2) at the colliders PEP-II and KEK-B
requires more detailed estimates which are in progress.

The values of the signal to background ratio S/B (43)
obtained in the QED model are typically around 1%. How-
ever, with the expected high luminosity of B- and φ-
factories the statistical significance of the effect SS (44) is
high enough (typically about 10) for the considered ideal
case when all dipions are assumed to be recorded. The
strongly different dependence of signal and background
on the components of the total dipion momentum results
in a large improvement of both S/B and SS (by about a
factor 10 for W ∼ 0.5 ÷ 1 GeV at the PEP-II) at suitable
cuts in the total transverse momentum of pion pair k⊥
and its total rapidity (see Table 2). With these estimates
the perspectives of experiments look well.

The charge asymmetry in the resonance region will be
considered elsewhere. Preliminary estimates indicate that
the effect will be observable. Moreover, the quick change
of the phase near the resonance results in a strong depen-
dence of the asymmetry on W in this region; this could
help to distinguish resonance models.

Finally, note that the presented equations for the muon
charge asymmetry (47) can be used to estimate the pro-
duction of c quarks in the process e+e− → e+e−cc̄ with
production of open charm. The deviation from the QED
result will be caused by violation of quark–hadron dual-
ity due to strong interactions. These deviations are ex-
pected to be large near the threshold where the cc̄ reso-
nance production is essential in both p- and s-waves. Sim-
ple QED calculations with an additional charge factor 8/9
give ∆σv ∼ 0.27 pb at s1/2 = 10 GeV and about 4.1 pb at
s1/2 = 200 GeV (here we put the c quark mass to 1.75 GeV
to take into account the threshold for the production of
open charm).
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Appendix A
Kinematics of the process γ∗γ∗ → π+π−

Due to 4-momentum conservation q1 + q2 = p+ + p−, the
amplitudeMµν of the process γ∗γ∗ → π+π− depends only
on three independent momenta q1, q2, ∆ = p+ − p−. We
use the Mandelstam variables

W 2 = (q1 + q2)2, t = (q1 − p+)2, u = (q1 − p+)2,

with the relations

W 2 + t+ u = 2µ2 + q21 + q22 , t− u = −2q1∆ = 2q2∆.

The polarization properties of the virtual photons are
described by two polarization 4-vectors, e(a)

1 and e(b)2 , with
helicities a, b = ±1, 0. For scalar (longitudinal) photons
(a = b = 0) we use the following polarization vectors:

e
(0)
1µ =

√
−q21
X

(
q2µ − q1q2

q21
q1µ

)
,

e
(0)
2ν =

√
−q22
X

(
q1ν − q1q2

q22
q2ν

)
, (A.1)

X = (q1q2)2 − q21q22 .
The transverse photons (a, b = ±1) can be described by
two independent polarization vectors only. This choice can
be realized by taking those vectors in the γ∗γ∗ center-of-
mass system in the form

e
(±)
1 = e(∓)

2 = ∓ 1√
2
(0, 1,±i, 0). (A.2)

To construct the corresponding covariant expression,
we introduce a metric tensor of the subspace which is or-
thogonal to the 4-vectors q1 and q2

Rµν = gµν − 1
X

[
(q1q2) (q1µq2ν + q1νq2µ)

− q21q2µq2ν − q22q1µq1ν

]
and define two 4-vectors in that subspace (both of them
antisymmetric under p+ ↔ p− exchange)

rµ =
1
2
Rµν∆ν , sµ = εµναβ∆νq1αq2β ,

rµsµ = 0. (A.3)

In the γ∗γ∗ c.m.s. the tensor Rµν has only two nonzero
components Rxx = Ryy = −1. Both 4-vectors rµ and sµ
have only nonzero components in the x and y directions
and are perpendicular to each other6. Therefore, we can
choose the x- and y-axes along these 4-vectors:

e(x)
µ =

rµ√
−r2

, e(y)
µ =

sµ√
−s2

. (A.4)

6 In the γ∗γ∗ c.m.s. the nonzero components of the 4-vector
r coincides with the transverse components of the vector p+⊥
or with the transverse components of the vector (−p−⊥)

In the γ∗γ∗ c.m.s. e(x) = (0, 1, 0, 0), e(y) = (0, 0, 1, 0). As a
result, the covariant expression for the vectors (A.2) takes
the form

e
(±)
1µ = e(∓)

2µ = ∓ 1√
2

(
e(x)
µ ± ie(y)

µ

)
. (A.5)

We define the helicity amplitudes for the discussed pro-
cess as

Mab = e(a)
1µ e

(b)
2νM

µν ,

where the inverse transformation is given in (10). Taking
into account parity conservation, we obtain

M++ = M−, M+− =M−+,

M0+ = −M0−, M+0 = −M−0. (A.6)

Since under π+ ↔ π− exchange the C-even amplitude
Mµν is symmetric whereas the 4-vectors e(±)

1,2 are anti-
symmetric [cf. (11)], the amplitudes M++, M+− and M00
are symmetric and the amplitudes M0+ and M+0 are an-
tisymmetric under that exchange [see (12)].

Under photon exchange (q1 ↔ q2) the polarization
vectors have to replaced by e(0)1 → e

(0)
2 , e(x) → e(x),

e(y) → −e(y), e(±)
1 → −e(±)

2 , which can in a short-hand
way be written as

e
(a)
1 → (−1)ae

(a)
2 .

Taking into account Mµν(q1, q2, ∆) = Mνµ(q2, q1, ∆), we
obtain

Mab(q1, q2, ∆) → (−1)a+bMba(q1, q2, ∆). (A.7)

It is useful to present these amplitudes for the pure
QED case (point-like pions):

MQED
++ = 8πα−MQED

+− ,

MQED
+− = −8πα

r2(W 2 − q21 − q22)
(t− µ2)(u− µ2)

, (A.8)

MQED
+0 = −2πα

√
2q22r

2

X

(t− u)(W 2 + q22 − q21)
(t− µ2)(u− µ2)

,

MQED
0+ = −2πα

√
2q21r

2

X

(t− u)(W 2 + q21 − q22)
(t− µ2)(u− µ2)

,

with

r2 = −W
2

4X
[
(t− µ2)(u− µ2) − q21q22

]
+ µ2 < 0. (A.9)

In the γ∗γ∗ cms the quantity (−r2) is the squared trans-
verse momentum of π+ or π−.

Appendix B
Calculation of traces

B.1 Sudakov variables

When calculating the trace (19), we neglect the electron
mass me and decompose any 4-vector A into components
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in the plane of the 4-vectors p1 and p2 and in the plane
orthogonal to them:

A = xAp1 + yAp2 +A⊥, (B.1)

xA =
2p2A
s
, yA =

2p1A
s
, A2 = sxAyA +A2

⊥.

The parameters xA and yA are the so-called Sudakov vari-
ables; in the collider system described in Sect. 3 the 4-
vector A⊥ has x and y components only:

A⊥ = (0, Ax, Ay, 0), A2
⊥ = −A2

⊥. (B.2)

In particular,

p± = x±p1 + y±p2 + p±⊥,
∆ = x∆p1 + y∆p2 +∆⊥, (B.3)
qi = xip1 + yip2 + qi⊥,

with x±, y±, x = x+ + x− and y = y+ + y− mentioned in
(6).

In the used logarithmic approximation [see (20)] the
decomposition of q2 and r defined in (A.3) is simplified:

q2 = y2p2, r = yrp2 + r⊥, (B.4)

r2 = −r2
⊥, yr =

2
x
r⊥k⊥,

with y2 and r⊥ given in (22) and (25). Besides,

t− µ2 = −2q2p− = −sy2x−,
u− µ2 = −2q2p+ = −sy2x+,

t− u = 2q2∆ = sy2ξx.

Below we use the notation

e(a) ≡ e(a)
1 = x(a)p1 + y(a)p2 + e(a)

⊥ , (B.5)

with

x(±) = 0, y(±) =
2e(±)

⊥ k⊥
sx

,

y(0) =
√

−q21
(2 − x)
xs

, e(0)
⊥ =

k⊥√
−q21

. (B.6)

The normalization condition for the 4-vectors e(a)
µ results

in
e(a)∗

⊥ e(b)
⊥ = δab, a, b = ±1.

The following expressions will be useful (i, j = x, y):(
e(+)∗

⊥
)

i

(
e(+)

⊥
)

j
+

(
e(−)∗

⊥
)

i

(
e(−)

⊥
)

j
= δij , (B.7)

(
e(+)∗

⊥
)

i

(
e(−)

⊥
)

j
+

(
e(−)∗

⊥
)

i

(
e(+)

⊥
)

j
= δij − 2e(x)

i e
(x)
j ,

(B.8)(
e(+)

⊥
)

i
−

(
e(−)

⊥
)

i
= −

√
2e(x)

i , (B.9)

where the vector e(x)
⊥ has the form [in accordance with

definition (A.4)]
e(x)

⊥ =
r⊥
|r⊥| . (B.10)

B.2 Calculation of Cab
1

Now we describe the calculation of trace (19) in the used
approximation (20). First, we rewrite the trace Cab

1 with
a = 0,±1 and b = ±1 in the form of three terms

Cab
1 =

(−1)a+1

2
×

×Tr
[
p̂′
1ê

(a)∗p̂1

(
ê(b)
p̂1 + q̂2
sy2

∆̂− ∆̂ p̂′
1 − q̂2

sy2(1 − x) ê
(b)

)]

=
(−1)1+a

2sy2(1 − x)
[
Nab

1 + y2
(
Nab

2 +Nab
3

)]
, (B.11)

Nab
1 = Tr

[
p̂′
1ê

(a)∗p̂1
(
(1 − x)ê(b)p̂1∆̂− ∆̂p̂′

1ê
(b)

)]
,

Nab
2 = (1 − x)Tr

[
p̂′
1ê

(a)∗p̂1ê(b)p̂2∆̂
]
,

Nab
3 = Tr

[
p̂′
1ê

(a)∗p̂1∆̂p̂2ê(b)
]
.

The polarization 4-vector e(a) appears in Cab
1 in the com-

bination ê(a)∗p̂1 only; therefore, the p1 component of e(a)

does not contribute (p̂1p̂1 ≈ 0). Since x(±) = 0, such a
component is also absent in e(b). As a result, we can use
all polarization 4-vectors in the form

e(a) = y(a)p2 + e(a)
⊥ .

Next, for N1 we use the relations

p̂1ê
(b)p̂1 = sy(b)p̂1,

p̂′
1ê

(b)p̂′
1 = 2(e(b)p′

1)p̂
′
1 = [(1 − x)sy(b) + 2(k⊥e(b)

⊥ )]p̂′
1,

which results in

Nab
1 = −2(k⊥e(b)

⊥ )Tr
[
p̂′
1ê

(a)∗p̂1∆̂
]
.

For the trace we obtain

Tr
[
p̂′
1ê

(a)∗p̂1∆̂
]

= 2s
[
s(1 − x)y(a)∗y∆ +

−q21
s

(∆⊥e(a)∗
⊥ )

+ y∆(k⊥e(a)∗
⊥ ) + y(a)∗(∆⊥k⊥)

]
.

The final result can be expressed in the form

Nab
1 = −4s

[
y∆D3 +

−q21
s
D2 +

(
(1 − x)y∆ +

v

s

)
D4

]
,

where we have used the basic structures

D0 = (e(a)∗
⊥ e(b)

⊥ ), D1 = (e(a)∗
⊥ k⊥)(e(b)

⊥ ∆⊥),

D2 = (e(a)∗
⊥ ∆⊥)(e(b)

⊥ k⊥), D3 = (e(a)∗
⊥ k⊥)(e(b)

⊥ k⊥),

D4 = sy(a)∗(e(b)
⊥ k⊥), D5 = sy(a)∗(e(b)

⊥ ∆⊥).

Similarly we obtain

Nab
2 = 2s(1 − x) [

(v − q21x∆)D0 +D1

− D2 + x∆D4 + (1 − x)D5] ,

Nab
3 = 2s [−vD0 +D1 +D2 + (1 − x)D5] ,
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and the final expression for Cab
1 :

Cab
1 =

(−1)1+a

y2(1 − x)
[−xy2(v − ξk2

⊥)D0 + (2 − x)y2D1

+
(

2q21
s

+ xy2

)
D2 − 2y∆D3 (B.12)

−
(

2v
s

+ 2(1 − x)y∆ − y2xξ(1 − x)
)
D4

+ y2(1 − x)(2 − x)D5] .

with
sxy∆ = 2x(p1∆) = 2v − ξ(W 2 + k2

⊥).

B.3 Calculation of T =
∑
ab

MabC
ab
1

Using (B.6) we find for T the expression

T = (C++
1 + C−

1 )M++ + (C+−
1 + C−+

1 )M+−
+ (C0+

1 − C0−
1 )M0+ (B.13)

=
2

y2(1 − x) [G0M++ +G2M+− +G1M0+].

Taking into account (B.7), the basic structures related to
the amplitude M++ are

D0 = 2, D1 = D2 = v, D3 = k2
⊥,

D4 =
2
x
D3, D5 =

2
x
D1,

which leads to the coefficient G0:

G0 =
v

x

[
2(1 − x)y2 − (2 − x)

(1 − x)
k2

⊥
s

]

+ k2
⊥

[
y2ξ − (2 − x)y∆

x

]
. (B.14)

Analogously we get for the basic structures related to
M+− [taking into account (B.8)]

D0 = 0, D1 = D2 = D(2)
1 = v − (v − ξk2

⊥)(∆2
⊥ − ξv)

2r2
⊥

,

D3 = D(2)
3 = k2

⊥ − (v − ξk2
⊥)2

2r2
⊥

,

D4 =
2
x
D

(2)
3 , D5 =

2
x
D

(2)
1 ,

which gives the coefficient G2:

G2 =
[
2y2
x

(
1 − x+

x2

2

)
− k2

⊥
(1 − x)s

]
D

(2)
1

+
[
(1 − x)y2ξ − (2 − x)y∆

x
− 2v
xs

]
D

(2)
3 . (B.15)

Finally, the coefficient G1 is obtained from [using (B.9)]

D0 = D(1)
0 = − v − ξk2

⊥√
−2q21r

2
⊥
,

D1 = D(1)
1 = − (∆2

⊥ − ξv)k2
⊥√

−2q21r
2
⊥
,

D2 = vD(1)
0 , D3 = k2

⊥D
(1)
0 ,

D4 =
2 − x
x(1 − x)k

2
⊥D

(1)
0 , D5 =

2 − x
x(1 − x)D

(1)
1 ,

as follows:

G1 = −k2
⊥

[
y2ξ − 2y∆

x
− 2v
x(1 − x)s

]
D

(1)
0

− 2 − x
x
y2D

(1)
1 . (B.16)

The coefficients Gn depend on the vectors ∆⊥,k⊥ and
r⊥. Using the relation ∆⊥ = 2r⊥ + ξk⊥ [see (25)] and
introducing the angle φ between the vectors r⊥ and k⊥
we get after some algebra the compact expression for T in
the form of (28) and (29).

Appendix C
Some useful notes

C.1 Substitution rule for the contribution dσ13

Let us briefly describe the necessary changes for dσ13 in
the case of electron–positron or electron–electron colli-
sions:

e−(p1) + e±(p2) → e−(p′
1) + e±(p′

2) + π+π−.

The contribution dσ13 has the form

dσ13 = 2Re(M∗
3M1)

dΓ
2s

= −2
(4πα)3

q21q
2
2k

2

∑
abc=±1,0

Re
(
F ∗

πMab)
ac
1 C

bc
2

) dΓ
2s
,

where )ac
1 and Cbc

2 are similar to )bc
2 and Cac

1 in (18) and
(19). dσ13 can be obtained from dσ12 under the exchange

p1 ↔ p2, p
′
1 ↔ p′

2, q1 ↔ q2.

It is not difficult to check that in that case

)bc
2 → (−1)b+c)bc

1 , Cac
1 → ∓(−1)a+cCac

2 . (C.1)

The sign ∓ in the last equation is in agreement with the
transition from three e− vertices in Cac

1 to three e± ver-
tices in Cac

2 .
As a result, taking into account (A.7), we have

dσ13 = ∓dσ12(p1 ↔ p2, p
′
1 ↔ p′

2, q1 ↔ q2), (C.2)

where the “minus” sign corresponds to electron–positron
collisions considered here and “plus” to electron–electron
collisions.
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C.2 Absence of amplitude M+− in dσ12 averaging over
angle φ

The amplitudeM+− enters the result (24) with coefficient
C+−

1 + C−+
1 [see (B.13)]. Let us consider C−+

1 given by
(B.11). Since

e(−)∗ = −e(+) ≡ −e
and

eq1 = eq2 = 0, ep1 = ep′
1, êê = 0,

we have
êp̂1ê = êp̂′

1ê = 2(ep1)ê.

Therefore, the C−+
1 coefficient can be simplified to a trace

of four Dirac matrices making it easily calculable:

C−+
1 = −(ep1)Tr

{
ê
p̂1 + q̂2
sy2

∆̂p̂′
1 − êp̂1∆̂ p̂1 − k̂

sy2(1 − x)

}

=
(ep1)2f1 + (ep1)(e∆)f2

sy2(1 − x) ,

with

f1 = 8xp1∆− 4(1 − x)q2∆,
f2 = 4xp1k + 4(1 − x)q2(p1 + p′

1).

It is easy to check that only two scalar products depend
on the azimuthal angle φ:

2ep1 = sy(+) =
2
x
e(+)k⊥ = −

√
2
x

|k⊥|eiφ,

2xp1∆ = 4|r⊥||k⊥| cosφ− ξ (
W 2 − k2

⊥
)
.

As a result, the structure of C−+
1 is

C−+
1 = (a+ b cosφ)e2iφ + ceiφ,

which leads to

C+−
1 + C−+

1 = 2ReC−+
1

= (b+ 2c) cosφ+ 2a cos 2φ+ b cos 3φ.

Therefore, this coefficient disappears after averaging over
φ:

〈C+−
1 + C−+

1 〉φ = 0. (C.3)

C.3 Low k⊥ limit for dσ12

At small transverse momentum of the produced pion pair
k⊥, our result (24) and (28) is simplified to

ε+ε−
dσ12

d3p+d3p−
= − α3

4π4
x

W 6d

k⊥∆⊥
k2

⊥

×
(

1 − y2 +
1
2
y22

)
L2

[
(1 − x)Re (F ∗

πM++) (C.4)

−
(

1 − x+
1
2
x2

)
Re (F ∗

πM+−)

]
,

with y2 =W 2/(sx).
Analogously, in this limit the muon pair production

[see (47)] takes the form

ε+ε−
dσ12

d3p+d3p−
=

4α3

π3
x

W 6d

k⊥∆⊥
k2

⊥

×
(

1 − y2 +
1
2
y22

)
L2

[
(1 − x)4µ2

W 2 (C.5)

−
(

1 − x+
1
2
x2

) (
2 − ∆2

⊥
W 2

)]
.

Both distributions are proportional to the transverse vari-
able v = k⊥∆⊥ and do not depend on the longitudinal
variable ξ. These results coincide with those of [3].
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